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A B S T R A C T

Clean energy technologies that cost more than fossil fuel technologies require support through research and
development (R &D). Learning-by-doing relates historical cost decreases to accumulation of experience. A
learning investment is the amount of subsidy that is required to reach cost parity between a new technology and
a conventional technology. We use learning investments to compare the relative impacts of two stylized types of
R &D. We define curve-following R &D to be R&D that lowers costs by producing knowledge that would have
otherwise been gained through learning-by-doing. We define curve-shifting R &D to be R &D that lowers costs
by producing innovations that would not have occurred through learning-by-doing. We show that if an equal
investment in curve-following or curve-shifting R&D would produce the same reduction in cost, the curve-
shifting R &D would be more effective at reducing the learning investment needed to make the technology
competitive. The relative benefit of curve-shifting over curve-following R &D is greater with a high starting cost
and low learning rate. Our analysis suggests that, other things equal, investments in curve-shifting R &D have
large benefits relative to curve-following R &D. In setting research policy, governments should consider the
greater benefits of cost reductions brought about by transformational rather than incremental change.

1. Introduction

Innovation in clean energy technology shapes the future of our
energy system and provides solutions for deep decarbonization
(Edenhofer et al., 2014; IEA, 2015). Deployment of these technologies
at a scale that can significantly reduce greenhouse gas emissions
requires them to be cost competitive in energy systems that are
currently dominated by conventional fossil fuel technologies. New
clean energy technologies can compete with fossil fuel technologies if
there is an appropriate policy environment and costs are sufficiently
low (Yang et al., 2015).

Studies across many sectors and industries relate historically
observed decreases in the cost of a technology to key factors related
to diffusion, such as cumulative quantity or experience. In these
analyses, a learning rate (R) is used as a metric to express the
percentage reduction in the cost of a technology as a result of every
doubling of its cumulative quantity. Incremental additions of new
technologies achieve cost reduction more quickly than similar addi-
tions of mature technologies. However, new technologies have a higher
starting cost that impedes their further deployment. Learning-by-

doing, where cost reductions are achieved through increased experi-
ence, was originally observed in empirical studies in manufacturing
(Wright, 1936; Alchian, 1963; Arrow, 1971; Hirsch, 1952) where
learning curves (also known as experience curves) are used to estimate
the cost reduction as a function of experience gained from increased
cumulative quantity.

A very common functional representation of learning-by-doing is a
single-factor learning curve, where cost of a technology is a power law
of its cumulative quantity (Nagy et al., 2013). Fig. 1 demonstrates
empirical learning curves for several clean energy technologies, adopt-
ing a power law to represent the relationship between cost and
cumulative quantity. As a technology's quantity increases from the
starting quantity Q0 to the critical quantity Q*, its cost drops from the
starting value C0 to the same cost as the conventional energy
technology C (Nemet, 2009). We use data from this figure for
subsequent analysis of the impact of different types of R &D.

Although the simple relationship between cost and cumulative
quantity is useful to represent and project learning, it faces limitations
(Nordhaus, 2009). One key shortcoming is that this representation
does not distinguish among the various factors that may have
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contributed to learning. Some of these reductions in cost may be a
consequence of other factors, including economies of scale. Several
analyses have indicated that some of the reduction is due to true
learning (Lundvall and Johnson, 1994; Gaynor et al., 2005). Here, we
use the term learning-by-doing broadly to encompass the many sources
of cost reduction as cumulative quantity increases.

The area between the learning curve and cost of the conventional
technology represents the total subsidy necessary to reduce the cost of
new technology to that of the conventional technology. This “learning
investment” is required for any new technology with higher starting
cost to achieve cost parity with the conventional energy technology,
should all government support come in the form of deployment
incentives (Foxon, 2010). In practice, subsidies may be larger than
the required learning investment due to inefficient policy design.

Research and development (R &D) can potentially reduce the
learning investment in very different ways (Kahouli-Brahmi, 2008).
Some R&D could generate knowledge that would have been gained
through increased deployment. This type of R &D reduces the cost by
following a path along the same learning curve. Therefore, the effective
starting cost and quantity will be somewhere down the learning curve
from the original starting point. For example, research into incremen-
tal improvements in manufacturing processes might generate informa-
tion that would have been gained as deployment of the technology
increased. This resembles many R &D investments in corporate sector
where business entities try to maximize their profit by modification to
existing products or services. As a convention, we call this type of
incremental R &D ‘curve-following’ R&D. This kind of R &D is often,
though not exclusively, undertaken by the corporate sector. For
example, Gallagher describes improvements in photovoltaic (PV) wafer
efficiency and costs sought by private manufacturers in China
(Gallagher, 2014):

Early shortages of silicon also inspired Chinese firms to use it more
efficiently. One firm noted that it focused heavily on how to make
the wafer thinner so as to use less silicon. During a tour of one
manufacturing plant, I paused to watch a camera flash over each
finished wafer to determine its efficiency, and the cell efficiency of
most cells was about 16.5%, with approximately 10% of the wafers
higher than 17% efficiency. I murmured compliments, which were
immediately and forcefully rebuffed as my host declared that the
efficiency still wasn't good enough and the goal was to achieve at
least 20% efficiency within a few years.

Similarly, several manufacturing innovations have decreased solar
module costs and increased efficiency. They include adoption of

fluidized-bed reactors for silicon production, diamond wire saws,
stencil printing, and anti-reflective coatings, as well as increasing the
number of busbars within a cell (McCrone et al., 2016).

In contrast, R &D could also potentially produce transformational
knowledge, such as use of a different substrate for PV devices that
would not occur in the course of manufacturing scale up. This type of R
&D reduces the cost by shifting the learning curve to a lower level with
the same slope. Therefore, the new starting cost will be lower than the
original cost while the starting quantity remains the same. This
transformational learning results from fundamental R &D that aims
to transform manufacturing processes. It is often funded by govern-
ment entities, and undertaken by academics, government-sponsored
laboratories, and private industry. The U.S. Department of Energy, for
example, is funding research on PV technologies that are far from
commercialization, but whose development could have a large impact
on the costs and performance of solar energy systems. These include
hybrid PV-thermal solar energy systems, and advanced materials for
PV, including perovskites (Kim et al., 2015; Branz et al., 2015). As a
convention, we call this type of transformational R &D ‘curve-shifting’
R&D.

There are many reasons why the government and corporate sectors
underinvest in transformational R &D. Profit-maximizing firms under-
take R &D to maximize their expected returns: as such, they target
incremental improvements in existing processes to reduce costs or gain
a larger market share. Transformational R &D, in contrast, is often too
speculative for corporate actors, or requires a long time to produce
successful outcomes (Taylor, 2012). A recent survey of the U.S.
corporate sector found that private firms are overwhelmingly focused
on short-term returns in their energy innovation investments, with
two-thirds of those who measure economic impacts of their invest-
ments expecting to recoup expenditures in only two to three years (Diaz
Anadon et al., 2011). Additionally, knowledge generated from trans-
formational R &D may not be fully appropriable by private firms,
leading to underinvestment (Jaffe et al., 2005). For governments,
underinvestment in transformational R &D is instead related to
budgetary constraints and the lack of an entrepreneurial culture that
accepts risk and encourages competition (Diaz Anadon et al., 2011).

Some studies use a two-factor learning curve in order to account for
the role of R &D in reducing costs. Unfortunately, these models face
several limitations. Typical two-factor learning curves represent learn-
ing-by-researching as a function of R &D spending, which amplifies
learning-by-doing through a similar power law (Jamasb and Kohler,
2007; Barreto and Kypreos, 2004; Berglund and Söderholm, 2006).
However it is not clear what is a quantifiable measure of cumulative
research, or knowledge stock, in these models. Some models use the
cumulative R &D spending for a specific technology (Jamasb, 2007;
Söderholm and Klaassen, 2006; Barreto and Kypreos, 2004). However,
investment data are not easily accessible, especially for non-OECD
countries and the corporate sector. Another candidate is the number of
patents related to a specific technology. Patents, however, are an
imperfect measure of innovation (Johnstone et al., 2010). In any case,
finding reliable and robust data points remains a main challenge for
calibrating these models (Lohwasser and Madlener, 2013). Moreover,
two-factor learning models typically assume that R &D investment and
deployment are uncorrelated, which is unlikely (Söderholm and
Sundqvist, 2007).

Here, we compare the impacts of two stylized types of R &D, curve-
following and curve-shifting, in the context of a single-factor learning
curve. Curve-following R &D lowers costs by producing incremental
knowledge that would have otherwise been gained through learning-
by-doing, increasing effective cumulative quantity. Curve-shifting R &
D produces transformational innovations and improvements that
would not have occurred through learning-by-doing, reducing costs
by a fixed percentage. These curve-shifting R&D investments reduce
costs while preserving the original learning rate, R. We consider the
potential impact of these two types of R &D spending in reducing the

Fig. 1. Learning curves for clean and conventional energy technologies. The horizontal
axis represents cumulative quantity of electricity generation and the vertical axis
represents the unit cost of electricity generation. Both scales are logarithmic. Learning
rates (R) are shown in parentheses. Q0 indicates starting quantity and C0 is starting cost.
With this axis scaling, straight lines represent power laws (Eq. (1)). We use data from this
figure for subsequent analysis of the impact of different types of R &D (EIA, 2015, Wene,
2000; Rubin et al., 2015).
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learning investment, the total investment needed to make a new
technology cost competitive.

2. Analytical framework

In this section, we introduce several equations to describe the
impact of R &D on cost and learning investment. First, we compare
cost reduction in a new technology due to learning-by-doing with the
constant cost of a conventional technology. Using a learning curve
framework, we define the learning investment. Then, we introduce
analytical expressions for the cost reductions resulting from curve-
following and curve-shifting R &D. Finally, we compare the learning
investment associated with each type of R &D. Additional equations
and derivations are shown in the Supporting Information. Table 1
defines all variables and parameters in this paper.

2.1. Learning curves

As discussed in Section 1, typical functional representations of
learning curves relate cost reduction to cumulative quantity. Like
others, we assume a power law relates cumulative quantity (Q) to cost
(C):

C aQ= ,b (1)

where a > 0 and b < 0 are learning parameters. Parameter a can be
calculated from C aQ= b

0 0 where C0 and Q0 are the starting cost and
cumulative quantity. Parameter b defines the learning rate (R), which is
the fractional improvement per doubling of cumulative quantity:

R = 1 − 2 .b (2)

Throughout our analysis, we assume that the cost of a conventional
energy technology remains unchanged as cumulative quantity increases
(i.e. b=0). New technology, on the other hand, exhibits learning, where
cost declines as total installed quantity increases. Fig. 2(a) shows how
cost changes as a function of cumulative quantity, using solar PV as an
example. The starting cost of the new energy technology is higher than
of the cost of the conventional energy technology (C C>0 ) but as the
cumulative quantity increases the cost of new technology reaches cost
parity. The critical quantity for cost parity is denoted Q*, and can be
found by equating both cost functions and solving:
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2.2. Learning investment

The learning investment is the amount of subsidy needed to reach
cost parity for a clean energy technology. The area between the learning
curves of a conventional and a new energy technology represents the
total learning investment (B) needed to reduce the cost until reaching a
critical quantity, Q* (Ferioli et al., 2009). The learning investment is
shown in Fig. 2(a) as the shaded area between the solar PV learning
curve and cost of fossil fuels. The equation for total learning investment
(B) is derived in Eq. (S1) in the Supporting information.

Table 1
Variables and parameters used in this paper.

Name Description Units

Variables
C Cost USD

C Conventional energy technology's cost USD

C0 Starting cost USD
rC Cost ratio (=C /C0 ) –

C Reduced cost USD

Q Cumulative quantity TWh
Q0 Starting quantity TWh

QΔ Change in starting quantity TWh

Q* Critical quantity TWh

Q′* New critical quantity TWh

Bfollow Curve-following learning investment USD
Bshift Curve-shifting learning investment USD
rB Learning investment ratio (=Bshift/Bfollow ) –

efollow Curve-following benefit –

eshift Curve-shifting benefit –

re Shifting-to-following benefit ratio (=eshift/efollow ) –

Parameters
a Coefficient of learning curve USD
b Exponent of learning curve –

R Learning rate –

Fig. 2. Illustration of two stylized types of R &D for solar PV, a clean energy technology.
(a) Learning-by-doing reduces the cost of the clean energy technology as the cumulative
quantity of electricity generation increases. (b) Curve-following R&D reduces cost by
producing the same knowledge as learning-by-doing, with an effect equivalent to
increased cumulative quantity. (c) Curve-shifting R &D reduces cost by producing
knowledge that would not have been gained by learning-by-doing, scaling the learning
curve downward by a fixed percentage. The learning investment is the total subsidy
necessary to reach cost parity with fossil fuels. For the same initial reduction in cost,
curve-shifting R &D reduces the learning investment more than curve-following R&D.
Note that horizontal and vertical scales are linear. The learning curves would be straight
lines if both scales were logarithmic as in Fig. 1.
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2.3. Two types of R &D

R&D spending reduces the learning investment by reducing the
starting cost of deployment, C0. We consider two stylized possibilities
for cost reduction. We use the term ‘curve-following R&D’ to refer to
R &D investments that achieve learning in the same way as increased
quantity installation, effectively by increasing starting quantity Q0 and
reducing starting cost. We use the term ‘curve-shifting R&D′ to refer
to R &D investments that directly reduce the starting cost of deploy-
ment without an effective increase in starting quantity. We consider
‘incremental’ and ‘transformational’ to be analogous to ‘curve-follow-
ing’ and ‘curve-shifting’ R&D. In both cases, R &D spending can help
reduce the potential learning investment by adjusting the cost curve
while preserving the original learning rate, R.

These pathways represent two caricatures of R &D. Curve-following
R &D resembles learning-by-doing, treating R &D spending as a
substitute for production. It provides the developer of the technology
with resources to move along the learning curve to a new starting point.
As discussed earlier, R &D funded by the corporate sector often targets
incremental improvements in the manufacturing process that would
have been learned during deployment. Curve-shifting R&D targets
new materials or innovative technologies to facilitate potential break-
throughs. As mentioned previously, R &D funded by government
entities often aims to produce transformational changes in design that
would not occur in the course of manufacturing scale up. We do not
claim that these are the only impacts of government and corporate R &
D on learning, nor that government funded R &D cannot achieve
curve-following R&D outcomes, or vice versa. Instead, these repre-
sentations are used to probe the relative impacts of different R &D
processes.

We make further simplifications. For example, we treat the learning
rate as constant in our analysis. In reality, R &D may affect learning
rates in addition to costs. In addition, we have not accounted for R &D
spillover effects (Bednyagin and Gnansounou, 2012; Cohen and
Levinthal, 1989) in this analysis. Real R &D investments, including
those both by the government and corporate sectors, result in a
combination of curve-following and curve-shifting research.

In Sections 2.4 and 2.5, we show how each type of R &D reduces
the cost from its starting value of C0 to a lower value of C , reducing
learning investment.

2.4. Curve-following R &D

For curve-following R &D, where the cost reduction is achieved by
increasing the effective starting quantity from Q0 to Q , learning
proceeds along the original learning curve. Panel (b) in Fig. 2
demonstrates curve-following R &D for a 30% reduction in starting
cost for solar PV. In this case, the starting cost reduces to the new cost
C as it would if the starting quantity would have increased by QΔ . The
new learning curve can be defined as:

⎛
⎝⎜

⎞
⎠⎟C C Q Q

Q
= + Δ .

b

0
0 (4)

where
⎛
⎝⎜

⎞
⎠⎟Q Q QΔ = −C

C

b
0

1

00
.

Thus, the curve-following R&D is equivalent to having produced

another QΔ units. The effective critical quantity, Q*, (i.e., the cumu-
lative quantity that would result in price equivalence with the conven-
tional energy technology) is:

Q Q Q* = * − Δ . (5)

We derive the learning investment from curve-following R&D in
Equation S2 in the Supporting Information.

2.5. Curve-shifting R&D

In the case of curve-shifting R&D, where R &D targets the starting
cost without increasing effective cumulative quantity, learning will
follow a new trajectory that will intersect with the conventional energy
technology's cost at an earlier critical quantity (Panel (c) in Fig. 2). The
new learning curve can be defined as:

⎛
⎝⎜

⎞
⎠⎟C C Q

Q
=

b

0 (6)

The new critical quantity will be:

⎛
⎝⎜

⎞
⎠⎟Q Q C

C
* =

b
0

1

(7)

Similarly, we derive the learning investment from curve-shifting R &D
in Eq. (S3) in the Supporting information.

3. Learning investment comparison for R&D

We now compare the impacts of our two R &D pathways on
learning investment. First, we compare the effect of curve-following
and curve-shifting R &D should they be able to achieve the same cost
reduction. Ceteris paribus, does curve-following or curve-shifting R &
D generate a greater reduction in remaining learning investment? Eq.
(8) shows the ratio of learning investment remaining after a specified
cost reduction brought about by either a curve-shifting or a curve-
following R &D investment. We introduce rB as the ratio of learning
investment under curve-shifting R &D (Bshift) to learning investment
under curve-following R&D (Bfollow):

⎛
⎝⎜

⎞
⎠⎟r

B
B

C
C

= = < 1.B
shift

follow

b

0

− 1

(8)

Since C C< 0 and b < 0 when learning-by-doing reduces cost, the
ratio rB is less than one and therefore, B B<shift follow. Thus, for every
dollar reduction in the starting cost of new technology, curve-shifting
R &D is more efficient in reducing the future learning investment. Put
differently, curve-shifting R&D reduces learning investment faster
than curve-following R&D, when reducing the starting cost to the
same level. Using data for solar PV, which has a learning rate of 23%
(i.e., b = − 0.377), a curve-shifting R&D investment that reduces costs
by 30% from C USD MWh= 125 /0 to C USD MWh= 88 / would have a
B bnUSD= 6shift learning investment. This is 60% less than
B bnUSD= 15follow that would result from curve-following R &D invest-
ment (i.e., rB=0.4). The effect of these two stylized types of R &D on
learning for solar PV is shown in Panels (b) and (c) of Fig. 2.

Another way of comparing these two stylized types of R &D
investment is to calculate the cost elasticity of learning investment,
which measures how responsive each type of R &D investment is with
regard to a small change in starting cost. We name these cost
elasticities curve-following benefit (efollow) and curve-shifting benefit
(eshift), for their respective R &D type. We derive expressions for these
variables in the Supporting Information. Similar to Eq. (8), we can
form a shifting-to-following benefit ratio (re):

r
e

e
b

b
r

r
r= =

+ 1
.

1 −
. ( − 1)e

shift

follow

C

C
C

b
b− +1

(9)

For observed values of b and r =C
C
C

0 , we expect to have r > 1e or
e e>shift follow. That is, for every percentage reduction in the cost ( C C∂ /0 0),
there will be a larger percentage reduction in the learning investment
( B B∂ / ) under curve-shifting R &D than curve-following R &D. Again
using data for solar PV, which has cost ratio rC=2.5, a curve-following
R &D investment has e = 1.0follow while curve-shifting R &D has
e = 3.6shift . Therefore, re=3.6. This means that a cost reduction in solar
PV brought about by curve-shifting R&D would reduce the learning

S. Shayegh et al. Energy Policy 107 (2017) 532–538

535



investment 3.6 times more than an equivalent cost reduction brought
about by curve-following R &D.

4. Learning in energy technologies

Here, we compare the effects of learning and R&D for several
energy technologies. We use a conventional fossil fuel technology as a
baseline for calculating learning investments (Berglund and
Söderholm, 2006). We base our analysis on 2015 data provided by
Energy Information Administration (EIA), International Energy
Agency (IEA), and recent academic studies (EIA, 2015; Wene, 2000;
Rubin et al., 2015). We display these data in Fig. 1 for several clean
energy technologies. Table 2 summarizes the learning rate, cost ratio,
and shifting-to-following benefit ratio for renewable technologies
compared to a conventional fossil fuel technology.

4.1. Impact of R &D

The government and corporate sector both fund and undertake R&
D. For instance, the U.S. Department of Energy has an extensive R &D
program that aims to ensure American security and prosperity through
science and technology. Corporate technology developers also invest in
R &D in order to increase efficiency and reduce costs. As discussed in
Sections 1 and 2.3, these kinds of R &D often target, and achieve,
different ends.

For instance, innovation in the energy sector has been advanced by
government R &D programs such as ARPA-E, the Advanced Research
Projects Agency-Energy, which aims to advance high-potential, high-
impact energy technologies that are too early for corporate sector
investment (Bonvillian and Van Atta, 2011). Other programs at the
Department of Energy, such as the Basic Energy Sciences program,
fund research that is often too early-stage for private actors to under-
take (DOE, 2016). Much of this research supports basic science
advances that provide a basis for future energy technology break-
throughs. Therefore, government R &D spending often aims to be
curve-shifting R&D that has transformational characteristics. Curve-
following R &D, on the other hand, is often characteristic of corporate
spending that aims to further develop innovations into new commercial
products in an incremental fashion (Wang et al., 2013).

Table 3 reports 2015 estimates of global clean energy R&D across
several electricity technologies, based on a report by the Frankfurt
School, UNEP and Bloomberg New Energy Finance (McCrone et al.,
2016). Between 2004 and 2015, global government R &D investment
was approximately 33 billion dollars (2015 USD) across selected clean
technologies, while corporate R &D was roughly 48 billion. These
estimates should be treated with some caution: government R &D in
non-OECD countries is not reliably tracked or reported, nor is
corporate R &D. However, we can observe several important trends,
both in 2015 and cumulative data from 2004 to 2015. First, recent
corporate R &D expenditures are commensurate with, and often
exceed government R &D. Corporate R &D expenditures are strongest
for technologies with the highest amount of recent deployment,
including solar and wind technologies. Second, neither total nor
corporate R &D investment is necessarily dependent on cumulative
quantity (REN21, 2016). In 2015, cumulative wind quantity was
roughly twice as large as solar PV, but wind had one third total R &
D. Finally, the ratio of government to corporate R &D varies between
~0.5 and 1.8 for the technologies we examine, and are thus relatively
balanced between the two sectors.

Fig. 3 shows the shifting-to-following benefit ratio, re, for several
clean energy technologies using data from Table 2. The ratio re is a
function of the current cost of a clean energy technology, the cost of a
conventional energy technology, and the learning rate (Eq. (9)). We
find a large range of shifting-to-following benefit ratios: however, all
are greater than 3.6. Technologies with higher cost ratios and lower
learning rates have larger shifting-to-following benefit ratios, as the
relative benefits of curve-shifting R&D are magnified by the relatively
large learning investment necessary to reach cost parity.

In 2015 there was little correspondence between the ratio of
government-to-corporate R &D and the shifting-to-following benefit
ratio calculated from Eq. (9). As discussed in Sections 1 and 2.3, the
government-to-corporate R &D ratio enables a rough comparison of

Table 2
Clean energy technologies and their learning parameters. The cost ratio is the ratio of the
starting cost C0 to the cost of fossil fuel electricity generation. Shifting-to-following
benefit ratios vary between 3.6 for technologies with high learning rates and extremely
large numbers for technologies with low learning rates. This means that a cost reduction
in solar PV brought about by curve-shifting R &D would reduce the learning investment
3.6 times more than an equivalent cost reduction brought about by curve-following R &
D.

Technology Learning rate
(R)

Cost ratio
(rC)

Shifting-to-following
benefit ratio (re)

Solar PV 23% 2.50 3.6
Biomass 15% 2.010 12.3
Onshore Wind 12% 2.256 14.4
Offshore Wind 12% 3.938 129.7
Hydro 1% 2.336 approaching ∞

Table 3
There is little correspondence between the ratio of government-to-corporate R &D and the relative benefit of cost reductions brought about by curve-shifting vs. curve-following R &D (i.
e., the shifting-to-following benefit ratio). Investment estimates by Bloomberg New Energy Finance (McCrone et al., 2016). All values reported for 2015.

Technology Government R&D investment
(bn USD)

Corporate R&D (bn USD)
investment

Government-to-corporate R&
D ratio

Shifting-to-following benefit
ratio

Solar PV 1.9 2.6 0.8 3.6
Biomass 0.2 0.3 0.7 12.3
Wind (onshore, offshore) 0.6 1.2 0.5 14.4, 129.7
Small hydro 0.3 0.1 1.8 approaching ∞

Fig. 3. Shifting-to-following benefit ratio for clean energy technologies. The shifting-to-
following benefit ratio is the relative benefit of cost reductions brought about by curve-
shifting vs. curve-following R&D. The relative benefit of curve-shifting R &D is greatest
for technologies with low learning rates (R) and high costs relative to incumbent
technologies (rC).
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relative investment in curve-shifting and curve-following research. re,
to the contrary, measures how responsive each type of R &D invest-
ment is with regard to small change in the starting cost. re varies
between 3.6 and something approaching ∞ for technologies shown in
Table 3 and Fig. 3. For the clean technologies studied here, re values
suggest a high relative benefit of curve-shifting over curve-following R
&D. This result contrasts with actual R &D ratios (∼0.5 − 1.8), which
suggest that recent portfolios have been more balanced between curve-
shifting and curve-following R &D. Taken together, this may indicate
relative underinvestment in curve-shifting R &D by the government
and corporate sectors.

There are several limitations to this comparison. First, we are unable
to determine the actual balance of curve-following and curve-shifting R
&D within government and corporate portfolios. Actual R&D invest-
ments are directed towards a combination of curve-following and curve-
shifting research. Second, given government and corporate incentives to
underinvest in transformational R&D, the ratio of government-to-
corporate R&D may overestimate the amount of investment in curve-
shifting research. Finally, a consistent comparison of curve-shifting and
curve-following R&D impacts requires an understanding of the relation
between the size of the R&D investment and the cost reductions
achieved (e.g. cost reduction per dollar invested) (Baker et al., 2015).
Nevertheless, the lack of correspondence between the ratio of govern-
ment-to-corporate R &D and the relative benefit of cost reductions
brought about by curve-shifting vs. curve-following R&D indicates an
imbalance in government and corporate R&D portfolios.

5. Conclusions and policy implications

Learning-by-doing and R&D are two drivers of technological
change that help facilitate a transition towards a sustainable energy
system (Sagar and Van der Zwaan, 2006). R &D investment by both
government and corporate sectors impacts costs of new clean energy
technologies. Some of what is learned through R &D investment may
have been learned later through learning-by-doing, whereas other
knowledge would not have been obtained. Curve-following R &D
investments reduce the deployment cost in the same way as increased
quantity installation. Curve-shifting R &D investments reduce the
deployment cost through learning that is not related to cumulative
quantity. In either case, R &D investment is a tool to achieve a goal of
making clean energy technologies competitive with conventional
energy technologies. Curve-shifting and curve-following R &D repre-
sent two stylized end-points in the R&D spectrum; real research would
generate some knowledge that would be gained through learning-by-
doing and some that would not.

In this paper, we demonstrate how these two types of R&D
investment diverge in achieving cost-effective decarbonization. We show
that if curve-following and curve-shifting R&D investments were able to
produce the same cost reduction, the curve-shifting investment would
reduce the learning investment to a greater degree than would the curve-
following investment. The relative benefit of the curve-shifting R&D is
greater for technologies with a higher starting costs and lower learning
rates. We find that cost reductions brought about by curve-shifting R&D
in solar PV reduce the need for subsidies (i.e., the learning investment)
3.6 times more than the same reduction in cost brought about by curve-
following R&D. Relative benefits of curve-shifting R&D are even
greater for the other clean energy technologies considered here. The
benefits of cost-reductions brought about by curve-shifting R&D
investments, relative to those brought about by curve-following R&D
investments, are greatest for technologies with low learning rates and
with current costs that are high relative to incumbent technologies. The
lack of correspondence between recent government-to-corporate R&D
ratios and shifting-to-following benefit ratios suggest that society may be
underinvesting in transformational change.

Our analysis sheds light on the effectiveness of innovation policies
in reducing deployment subsidies and achieving long term climate

change mitigation. It highlights the fact that both R&D and learning-
by-doing can reduce costs, as part of a portfolio to support diffusion of
clean energy technologies. Our analysis also strongly suggests that, for
R &D producing the same change in cost, curve-shifting R &D has
large benefits relative to curve-following R&D. Of course, the size of
the R &D investments needed to produce those cost reductions may
differ dramatically and be difficult to predict. Nevertheless, in setting
research policy, governments should consider the greater benefits of
cost reductions brought about by transformational rather than incre-
mental change.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org.10.1016/j.enpol.2017.05.029.
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